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1. INTRODUCTION

This selection of map projections is based primarily on the
desire to find an aesthetically pleasing equal-area projection
for use in displaying statistical quantities on an all-sky map.
Fair comparison of statistical quantities requires an equal-area
projection. Three projections that are not equal-area (Simple
Cylindrical, Mercator, Aitoff) are included for comparison
purposes.

Map projections may be classified into several categories,
based on the underlying geometry in which they are derived.
Derivations of various projections may be found in, e.g., Pear-
son (1990). The categories are cylindrical, azimuthal, conical,
modified forms of these, and "novelty" projections. A large
selection of projections is available in Snyder and Voxland
(1989), from which the projection equations (Appendix of
Snyder & Voxland) and descriptive notes in the selections pro-
vided here were taken.

The section 2 reviews a few applicable aspects of differen-
tial geometry, mainly to show what is required of an equal-area
map projection and to indicate the behavior of map projection
meridians and parallels. Following that are the map projec-
tions, organized by type. Each map projection section con-
tains descriptive comments, the projection equations, the coor-
dinate derivatives (which show the behavior of the meridians
and parallels), the map projection's area function, a grid plot
representative of the map projection, and a map projection of a
grayscale density plot.

The grid plots are a projection of a coordinate grid with 20°
spacing in longitude and 10° spacing in latitude. Overlaid on
the grid plots are distorted small circles. These distorted cir-
cles appear as true small circles of radius 4° on the sphere, so
their apparent distortion on the mapping grid gives an indica-
tion of the distortion of the mapping.

The data for the density plot examples is from a mission
simulation of the FAME spacecraft with Sun angle 45° and
precession period 20 days. Specifically, the mean values of
the scan angle (the angle at which the FAME telescope field of
view crosses a star, with respect to the ecliptic meridian pass-
ing through the star) accumulated on a 120 X 96 grid of cells
evenly spaced in [4, sin 8] (where A and S are ecliptic coordi-
nates) are shown as grayscale values. The scaling is linear,
with the correspondence [black, white] < [-30°,30°]. See

http://aa.usno.navy.mil/murison/FAME/QObservationDensity/

for details. The density plots here are intended only as a
means of illustrating the various map projections.

2. DIFFERENTIAL GEOMETRY OF MAP PROJECTIONS

Let the vector valued function X : Ue R* > S € R" be a co-
ordinate patch, or mapping, where U is an open subset of R?

and S is an open subset of M e R?, where M is an n-
dimensional manifold. That is,

Xu,v) = [xi(u,v), ... x,(u,v)] )
where coordinates (1, v) € U.
The Jacobi matrix of the patch X is
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The Jacobi matrix can be thought of as the transformation ma-
trix which takes tangents of curves,

W, v) = 5 [ult), (1)] 3)
into tangents to the images of curves,
Wi, (u,v), ..., x,(u,v)) = JX) W (u,v) 4)

under X (see, e.g., Frankel, 1997, or Gray, 1998). With regard
to map projections, the elements of the Jacobi matrix of the
projection mapping give us the behavior of the map projection
meridians and parallels.

An example of a coordinate patch is

(u,v) - [(1 +cosv)cosu, (1 +cosv)sinv,2sinv]  (5)

the spindle torus, shown in Figure 1.

An infinitesimal length of arc (called the line element) in R?
is ds* = dx?> + dy*. For a coordinate patch, the general form of
the line element is

ds* = Edu® +2F dudv + G dv? (6)

Figure 1 — An example of a coordinate patch, showing curves of con-
stant u and constant v (cf. eq. (5)).
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This is the classical notation (dating from Gauss) for a metric
on a surface (see, e.g., Gray 1998). If we define
Euv)=|2|", Fu,v)=2<. & and G(u,v):|%{|2, then
the metric is a Riemannian metric, or the first fundamental
form. The Riemannian metric is the inner product on the tan-
gent space T,M of a manifold M at a point p = X(u,v). The
first fundamental form gives the arc length function when inte-
grated over a curve on the manifold. That is, if we parameter-
ize u and v by ¢, then

s(1) = j JEG D 2 ) 2 5 Gl (L) dr (7)

is the arc length of a curve on M. The vectors 2 and 2, are
tangent vectors to the surface — images under X of the coordl—
nate tangent vectors. To find the angle between them (and
hence the angles between meridians and parallels in a map pro-
jection context), we have

W o
or
F
cosf=—— 9)
JEG
Then
: JEG-F?
sinf=——

TEG (10)

The infinitesimal area element can also be found from the
components of the first fundamental form. The area of the im-
age under X an infinitesimal parallelopiped spanned by the co-
ordinate tangent vectors is just

A:‘a—XHg—f‘sinﬂdudv (11)

Thus, from (9) and (10),

=JEG-F* dudv (12)

The area of a patch X(U)over a region U is then
A(U)=”U VEG—-F? dudv (13)

It can be shown (Gray, 1998) that the form of the area
function, JEG—F? , is independent of the choice of patch.
Hence, it is an intrisic geometric measure.

Map projections are coordinate patches. First, we have a
mapping @ : R? > R* from coordinates (4, 8) to the 3-sphere

{f,ly,C: [EX+*+ (2 = l}, followed by another mapping
Y : R?* - R? from the sphere to the map surface (x,y). The
composite mapping X=¥ o ® is what we call a map projec-
tion.

If a map projection is such that an area element on the map
surface (x,y) maps into an area element on the sphere with a
constant scaling factor, then the map projection is said to be an
equal-area projection. In such a projection, an area element
of a given size from the map surface corresponds to the same
amount of area on the sphere (multiplied by a constant scaling
factor), no matter where on the map surface the area element is
taken from. The area element projected from the map surface
to the sphere may be both distorted in shape and rotated by
¥-1(X), but the area bounded by the distorted shape is the

same, independent of (x,y). The unit-radius sphere mapping

is given by (4,8) - [cosfcos i, cosfsinA,sinfB]. It's area
function is
JEG-F> =|cosfil (14)

This makes intuitive sense, since for polar coordinates on a
sphere of radius R an area element is dd4 = R*|cos Bld/dp.
This follows, of course, from the sphere mapping metric,
ds?® = R*(dp?* + cos*fdA?) . Thus, for a map projection to be
equal-area to a sphere, its area function must be
JVEG—F* =alcospfl, where a is a constant (which corre-
sponds to the square of the equivalent sphere radius).

On the map surface, curves of constant latitude £ (the map
"parallels") are given by [x,y] p= ‘;—i{, while curves of constant
longitude A (the map meridians) are given by [x,y]; =‘Z—§.
Thus, we have the following properties of the parallels and
meridians, based on the behavior of the mapping's coordinate
derivatives (i.e., the mapping's J acob1 matrix elements):

» Parallels are straight lines: 0,1 =0

» Parallels are equally spaced: 3 8/5’ = const
» Meridians are straight lines: Z—}; =0

» Meridians are equally spaced: % = const

3. CYLINDRICAL PROJECTIONS

3.1. Simple Cylindrical Projection

e Origin: Eratosthenes (2757-195? B.C), and, independently,
Marinus of Tyre (~100 A.D.).

e aka: Plate Carree projection.

e Meridians: equally spaced straight parallel lines.

e Parallels: equally spaced straight parallel lines.

e Scale: true along equator and along all meridians, increases
with distance from equator along parallels, constant along
any given parallel.

e Distortion: both shape and area, increasing with distance
from equator along parallels.

e Mapping function: [x,y] = [/, 8]

¢ Coordinate derivatives:

oX
o [1,0]

%—[01]

e Area function: EG—F? =1
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e Simple Cylindrical coordinate grid:

Figure 2 — Simple Cylindrical projection.

e Simple Cylindrical projected density plot:
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Figure 3 — Simple Cylindrical projection of density plot.

3.2. Mercator Projection

e Origin: Mercator, 1569.
e aka: Wright projection.
e Meridians: equally spaced straight parallel lines.

e Parallels: unequally spaced straight parallel lines, closest
near equator.

e Scale: true along equator or along two parallels equidistant
from equator, increases with distance from equator to infin-
ity at the poles, constant along any given parallel.

e Distortion: conformal (local angle preservation), increases
with distance from equator along parallels.

e Mapping function: [x,y] =[4,1n tan(é + %)]

¢ Coordinate derivatives:

oX

o = .01
ax |1+ tan?(4 +%)
B 17 2en(5+3)

1+tan2(§ +%)
2|tan(§+ 7]

e Area function: v EG—F* =

e Mercator coordinate grid:
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Figure 4 — Mercator projection.
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e Mercator projected density plot:

Figure 5 — Mercator projection of density plot.

3.3. Lambert Cylindrical Equal-Area Projection

e Origin: J.H. Lambert, 1772.

e aka: Cylindrical Equal-Area projection.

e Meridians: equally spaced straight parallel lines.

e Parallels: unequally spaced straight parallel lines, farthest
apart near equator.

e Scale: true along equator, increases with distance from
equator along parallels, decreases with distance from equa-
tor along meridians (thus maintaining equal area).

o Distortion: shape distortion in polar regions is extreme.

e Mapping function: [x,y]=[4,sinf]

¢ Coordinate derivatives:

oX _
Gﬁ =[0,cos ]

e Area function: Y EG—F? =|cosfl
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e Lambert Cylindrical coordinate grid:

Figure 6 — Lambert Cylindrical Equal-Area projection.

e Lambert Cylindrical projected density plot:
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Figure 7 — Lambert Cylindrical Equal-Area projection of density plot.

4. PSUEDO-CYLINDRICAL PROJECTIONS

4.1. Sinusoidal Equal-Area Projection

e Origin: Developed in 16th century.

e aka: Sanson-Flamsteed, Mercator Equal-Area.

e Meridians: equally spaced (along any given parallel) sinu-
soidal curves intersecting at the poles.

e Parallels: equally spaced straight parallel lines.

e Scale: true along every parallel and along the central merid-
ian.

e Distortion: severe near outer meridians at high latitudes,
zero along equator and along central meridian.

e Mapping function: [x,y] =[Acosf, f]
¢ Coordinate derivatives:
g‘i{ [cosf3,0]
0 ﬁ =[-Asinp, 1]

e Area function: Y EG—F? =|cosfl

¢ Sinusoidal coordinate grid:
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Figure 8 — Sinusoidal Equal-Area projection.

¢ Sinusoidal projected density plot:

Figure 9 — Sinusoidal Equal-Area projection of density plot.

4.2. Craster Parabolic Equal-Area Projection

e Origin: J.E.E. Craster, 1929.

e aka: Putnins P4 (independently in 1934).

e Meridians: equally spaced (along any given parallel) pa-
rabolas intersecting at the poles.

e Parallels: unequally spaced straight parallel lines, farthest
apart near equator, spacing changes very gradually.

e Scale: true along latitudes 36°46' N. and S., constant along
any given latitude.

¢ Distortion: severe near outer meridians at high latitudes but
somewhat less than that of the Sinusoidal, zero only at lati-
tudes 36°46' N. and S. on the central meridian. P

2
e Mapping function: [x,y] = [/1 (2 cos Tﬂ - 1), 7sin ?]
e Coordinate derivatives:

X _ 2B ]
o —[2cos 3 -1,0

X _
B

e Area function:  EG—F? =§|c0sﬂ|

Both x and y have been multiplied by a scale factor of /7/3
so that the 4 = 7 meridian intersects the equator at x = 7, as do
those of both the Quartic Authalic and the Sinusoidal projec-
tions, and so that the pole is at y = 7/2, as is that of the Sinu-
soidal projection. One consequence of this scale factor is that

[ 4/1 1n3ﬂ 3cosﬁ]
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the area element is not |cos I, as are the area elements of the e Coordinate derivatives:
Sinusoidal and Quartic Authalic projections. Removing the
scale factor changes the area element back to |cos 8|. Another ox cos 8
probable consequence is that the latitudes of true scale might VR 0
be shifted slightly. The scale factor allows easier comparison Cos >
(see below) with the Sinusoidal and Quartic Authalic projec-
tions. .
(2 +cos B) sin
e Craster Parabolic coordinate grid: % = —i#, cosg
4 cos? 5
e Area function:  EG—F? =|cosfj|
e Quartic Authalic coordinate grid:
e e
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Figure 10 — Craster Parabolic Equal-Area projection.

e Craster Parabolic projected density plot:
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Figure 11 — Craster Parabolic Equal-Area projection of density plot.

4.3. Quartic Authalic Equal-Area Projection

Origin: K. Siemon, 1937; independently by O.S. Adams,
1945.

Meridians: equally spaced (along any given parallel) quar-
tics intersecting at the poles.

Parallels: unequally spaced straight parallel lines, farthest
apart near equator, spacing changes gradually.

Scale: true along equator, constant along any given latitude.
¢ Distortion: severe near outer meridians at high latitudes but
somewhat less than that of the Sinusoidal, zero along equa-
tor.
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Figure 12 — Quartic Authalic Equal-Area projection.

e Quartic Authalic projected density plot:
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Figure 13 — Quartic Authalic Equal-Area projection of density plot.

Figure 14 is a combined plot of one quadrant of the Quartic
Authalic (blue), Craster Parabolic (red), and Sinusoidal (black)
projections. Theses are similar equal-area projections. The Si-
nusoidal is most peaked at the poles; the Quartic Authalic is
most "squashed" or elliptical. For clarity, Sinusoidal distortion
circles are not plotted above 40 degrees, and the distortion cir-
cles of the other cases are not plotted above 60 degrees. Dis-
tortion on the outer meridians at high latitudes is very similar
in the Quartic Authalic and Craster Parabolic projections and
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slightly less than that of the Sinusoid projection.
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Figure 14 — Comparison of one quadrant of Pseudo-Cylindrical Equal-
Area projections: Quartic Authalic (blue), Craster Parabolic (red), and Si-
nusoidal (black).

5. AZIMUTHAL PROJECTIONS

5.1. Lambert Azimuthal Equal-Area Projection

e Origin: J.H. Lambert, 1772.

e aka: Lorgna (independently, 1789), Zenithal Equal-Area,
Zenithal Equivalent.

e Meridians: unequally spaced complex curves intersecting at
the poles.

e Parallels: unequally spaced complex curves.

e Scale: true only at center, decreases with distance from cen-
ter along radii, increases with distance from center perpen-
dicular to radii.

¢ Distortion: moderate for one hemisphere but extreme for the
whole sphere.

e Mapping function:

ﬁcosﬁsin/l J2 sin 8
J1+cosfeosi ~ [1+cosfcos

[x,y]=

e (Coordinate derivatives:
[(1+cos?L)cosB+2cosA]lcosf

ox J2 (1 +cosBcos "
oz sinffcos fsin 4
J2 (1 +cosfcos "
_(2+cosfcos A)sinfsin 4
J2 @ +cosﬁcos/1)3/2

% (1+cos?f)cos /+2cosf
J2 (1 +cosfeos i)’
e Area function:  EG—F? =|cos fj|

e Lambert Azimuthal coordinate grid (one hemisphere,
AZ =10deg):

Figure 15 — Lambert Azimuthal Equal-Area projection.

e Lambert Azimuthal projected density plot (one hemi-
sphere):

Figure 16 — Lambert Azimuthal Equal-Area projection of density plot.

e Lambert Azimuthal coordinate grid (full sphere,
AL =20deg):

Figure 17 — Lambert Azimuthal Equal-Area projection.

6. MODIFIED AZIMUTHAL PROJECTIONS

6.1. Aitoff Projection

e Origin: D. Aitoff, 1889.

e Meridians: complex curves, equally spaced along equator,
intersecting at the poles.

e Parallels: complex curves, equally spaced along central me-
ridian, concave towards nearest pole.

e Scale: true along equator and central meridian.
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¢ Distortion: moderate shape and area distortion.
e Mapping function:

- —
4 A sin”f
7 cos 1(cosﬁcos§)‘/l——

1- coszﬁcosz%

[x,y]= s
2cos™! (cos/)’cos 5) sin 8

T, l— coszﬁcosz%

e (Coordinate derivatives:

2‘sm2 |cos Bl cos Bsin 5

n (1 - coszﬁcosz%)

2 cos™! (cosﬁcos %) sin’f cos?f cos % sin

A

2

+
02
w|l— _sinf (1 - coszﬁcoszi
1 —coszﬁcoszi 2
X _ 2
o2
A
cos fsin ffsin 5
n(l —coszﬁcosz%)
B sin ff cos?fi cos % sin% cos’l(cosﬁcos %)
32
n(l —coszﬁcosz%)
4‘ sin%‘ sinﬁcos%lcos/ﬂ
n(l - coszﬁcosz%)
Y _ A
_ 4s1np’s1n27 cos ffcos 1(cosﬂcos E)
3/2
nlcosﬁl‘sin%‘(l - coszﬁcosz%)
oX _
op ]
2(sinp)’ cos 5
4
n(l - COSZﬁcoszf) ,
c2 A 4
. 2 cos fisin 5 cos (cosﬁcosz)

3/2
T (1 —cos2f cosz%)
e Area function:

4 ‘ cos™! (cosﬁcos %)‘

JEG-F* == Icos Sl

= =
1 —coszﬁcoszf

:

¢ Aitoff coordinate grid:

iy
P R R
{7~ E PP o FRR AN
& ENEPN
¢ PP

N NP N N N -

- —

b A AT
[

ﬂ?zﬁ}%

)

Figure 18 — Aitoff projection.

o Aitoff projected density plot:

Figure 19 — Aitoff projection of density plot.

6.2. Hammer Equal-Area Projection
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e Origin: H.H. Ernst von Hammer, 1892 (inspired by Aitoff's

projection).

e aka: Hammer-Aitoff projection. Often erroneously called

Aitoff projection.
e Meridians: complex curves, unequally spac
equator, intersecting at the poles.

ed along

e Parallels: complex curves, unequally spaced along central

meridian, concave towards nearest pole.

e Scale: decreases from center along equator, decreases from

center along central meridian.

e Distortion: moderate, less shearing on outer meridians near

poles than with pseudocylindrical projections.
e Mapping function:

ZCosﬁsin% sin

[x,y]=

\/1 +cosﬁcos% \/1+cosﬁcos%
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¢ Coordinate derivatives: e Hammer projected density plot:

- [(3+cos/1)cosﬁ+4 cos%]cosﬁ -

4(1 +cosficos %)3/2
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oL~ i
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32
4(1 +cosficos %)
(sin/l cosff+4 sin %) sin
32
2(1 +cos ﬁ cos %) Figure 21 — Hammer Equal-Area projection of density plot.
ox _
op
(1+cos?p) 005%4.005 p Figure 22 is a plot of one quadrant of the Aitoff (red) and
R Hammer (black) projections. The unequal spacings of the
2(1 +cos ficos 7) ] Hammer meridians along the equator and the Hammer paral-
lels along the central meridian are evident. These unequal
e Area function: EG - F* = %lcos pl spacings follow from the requirement of equal area. Distortion
e Hammer coordinate grid: on the outer meridians at high latitudes is somewhat less se-
vere with the Aitoff projection. It is unfortunate that the Aitoff
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Figure 20 — Hammer Equal-Area projection. C \ \ % \ % \ \ % &l
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Figure 22 — Comparison of one quadrant of Modified Azimuthal pro-
jections: Aitoff (red), and Hammer Equal-Area (black).
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